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Knowledge of the integral of the equations of motion of a gyroscope enables us to inves- 

tigate certain details of the gyroscope axis trajectory. Various approximations of this 

trajectory are discussed. 
1. Let a gyroscope be mounted in universal suspension on a base rotating uniformly 

with the angular velocity W > 0. The axis of the outer frame forms the angle IT/2 - Cp 
with the axis of rotation of the base. We assume that the gravitational force (its accele- 
ration g ) is directed along the axis of the outer frame, while the center of gravity of the 
gyroblock is shifted relative to the axis of rotation by the quantity a = WA proportional 

to the angular velocity of the base. We shall be concerned principally with the case 

x = 0 , when the gyroscope is in equilibrium, 
The position of the frames is given in terms of the angles Cc , the angle of rotation of 

the outer frame relative to the base (a = 0 when the axes of the gyroscope, outer frame, 
and rotation of the base lie in the same plane), and @ , the angle of rotation of the inner 

frame relative to the outer (@ = 0 when the frame planes are perpendicular). 

Let 1, 1, be the axial and equatorial moments of inertia of the rotor ; 1, , 1,. .&= 
are the moments of inertia of the inner frame relative to the rotor axis, to the axis of the 
inner frame, and to the axis perpendicular to the first two axes ; Iax t lay, 12, are the 
moments of inertia of the outer frame relative to the axis perpendicular to the frame 
plane, to the inner frame axis, and to the outer frame axis ; lT2 , n are the mass and toral 

angular velocity of the rotor. Let us introduce the dimensionless quantities 

10 + I,, 1, + 11, + Ia, 1, + 11, - 11, 
.P= 1 9 Q= I 9 R= 

Z 

s = fZ,, - &-I + fZ?., - ‘a,1 fwl mgh. 
Z t a=I&o ==-iiT~ n=a-sincp 

Let us denote by y the angle between the axis of rotation and the gyroscope axis ; we 
have eos y = sin cp sin p + cos q, cos a cos fL We introduce the functions 

@(a, f3)= aSinfl-cosy=xsinfl-CoscpCOSaCoSB 

~bh Bf - If0 fR ~0s~ + S co@cp si@al, 

P(o, I% = (R -p) cosg,cosa- 2Rcosflcosy 

f (p) = Q - R sins fi (f (Bf > 0) 
From now on differentiation with resect to time t will be denoted by a dot ; differ- 

entiation with resect to CI and p will be denoted by a prime. In this notation the equa- 
tions of motion of the gyroscope can be written as 

f (S) a” + f’ (S) a’fi’ -t [Cl Cos 9 + Op (a, P)l P’ + W [a@ -t @W,’ =O (I.11 

967 
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PP” - lit f’(p)a** - Is-2 co9 p + op (a, a)1 a’ + 0 [s&D + :fiY]s’ == 0 ($2) 

We shall investigate system (1. l),( 1. ‘2) under the initial conditions 

e ltCO = a0, P It=0 = 909 a*It=o =q1. p' It_)- q?: (2.3) 

where a,, gor~r,&, are arbitrary numbers ( I PO I < Vs n). System (l.l),(l, 2) has a first 
integral which can be expressed in abbreviated form with the aid of the function 

F (a, @) = Q@ + oY. We have 

f (8 aV2 + PFs = 20 IF0 - F (u, P)l + oa [fox? t PX~] (1.4) 
fo - f No): .Fo = F (Got PO) 

By virtue of nonnegativeness of the left-hand side of (1.4) and the assumed positive- 
ness of W , the gyroscope moves in such a way that the point (a, @ ) of the plane a@ 

remains in the domain G,, defined by the inequality Fa .- F (a, j3) +Vs (0 I&t2 -!’ 
+ PQ] > 0. This domain will henceforth be referred to as the “potential well”. We 
shall always assume that W QC 10 1 , Because of this the potential well differs little from 

the domain Go defined by the inequality 8 (U+, - @ (a, 6)) > 0, (cD, = CD (a,, go)). 
Since the functions ‘$a,, @ ) and $ (Oz. B ) are 217 -periodic and even in Ct , it follows 

that the domains G, and Go are symmetrical with respect to the staight lines a = MT 

(k is an integer), 
We note that if the sign of 0 changes to its opposite, then the domain Go is replaced 

by the complementary portion of the plane CcB . On the other hand, it is evident that 
the direction of rotation of the rotor has little effect on the motion of the gyroscope axis. 

Taken together, these two facts indicate that the gyroscope moves in such a way that the 
point (a ,f3) lies near the boundary of the domain Got and therefore near the edge of 

the potential well. 
Let us convert from the independent variable 6 to the new variable ‘T in Eqs. (1.1) 

and (1.2) by setting t =W I . We introduce the small parameter p = W /Q . Problem 

(1.1) to (1.3) then becomes 

and instead of integral (1.4) we have Fq. 

The higherorder terms of system (1.5),(1.6) contain the small parameter p. Setting 

k = 0 and retaining only the first two conditions in (1.7). we arrive at the following prob- 
lem for determining the limiting trajectory : 

From Eqs. (1.9) we infer that @,‘a’ + U+,’ fl’ L= d, i.e. that the line CD (a, p) = Q. 
contains a limiting trajectory. Problem (1.9) is formulated differently and solved in Cl] 
for the case a = 0 and in rZ and 33 for a # 0 . This trajectory will be called “kinematic”. 
since it contains no information about the moments of inertia of the gyroscope frames or 



Motion of a gyrc4cope in univenrl Suspcllslon 969 

about the angular velocity of the gyroscope. In the case a = 0 the kinematic trajectory 

has the following meaning: at the initial instant the gyroscope axis establishes a certain 

direction in inertial space corresponding to the given Ct, and Do ; during subsequent 

rotation of the base the frames rotate in such a way that the gyroscope axis maintains a 
constant direction in inertial space. 

Let us denote by x1’ and ~2’ the values of the right-hand sides of Eqs. (1.9) at the 
point (a,, Bo). The motion of the gyroscope under initial conditions (1.3) for x1 = Xi, 

Xa =Xa’ will be called “motion with a compensating initial thrust”. In the case a = 0 

with a compensating initial thrust the gyroscope axis at the initial instant has zero velo- 

city relative to inertial space. This is precisely the case considered in [l], where the 
linematic trajectory is said to be highly precise. In the case a = 0 for the linematic 
trajectory we have y = yo . 

For the points of the real trajectory the left-hand side of Eq, (1.8) can be written as 

cos l/o - cos y , which is smaller in absolute value than I y - vol. H ence, the absolute 

value of the right-hand side of (1.8) can be considered a lower estimate for the error of 

gyroscope operation at any instant 7 , provided a (T), fl (z), da / dz, dB I dt are known. 

Assuming that for a real trajectory with a compensating thrust the values of the latter 
quantities differ from those for the kinematic trajectory by amounts not exceeding cp 

(c = const) , we can neglect the quantities of order I_la to obtain 

cos~o-c”s~s~ t s co@ cp (sin2 a0 - sins a) + 
i 

~-((P-R)~(sincpeos~o- 

- cos cp cos ao sin PO)2 - 
1 

$$- - (P - R)I (sin cp cos p - cos q~ cos a sin j3)a} (1.10) 

Here (a, 8) is a point of the kinematic trajectory 

sincp sin fi + COS CpcOSa COSp= COST0 

The right-hand side vanishes identically for inertialess frames (p = 8 =J? , s = 0). as i 
well as at the instants 7 = 0 and 7 = 2TT in the case of heavy frames. Formula (1.10) 

will be discussed from a different standpoint below. 

If the inequality Yy, _ Y (a’., 0”) -& ‘1~ [fOXra d+ PXaa] < O (1.11) 

is fulfilled at some point (a’, 13’) of the kinematic trajectory CD (a, p) - U-+ then the 
right-hand side of (1.4) is negative at this point, so that the point (a’;B ‘) does not lie 
in the potential well ; hence, it cannot belong to the true trajectory. Let us cite some 

examples. The motion for X1 = Xa = 0 will be called the “motion of a freely idling 

gyroscope”. In the case a = 0 at the points of the kinematic trajectory we have Eq. 

2(Yo - Y (a, fJ)) = Scosa ‘p (sin2 a,- sins a). This implies that for a freely idling gyro- 

scope with an undisplaced gyroblock inequality (1.11) is satisfied at almost all points of 
the kinematic trajectory in the following cases : 

(a) S > O,, a, = 0; (b) S<O, a,=V,x 
Writing ?J = signn , we find that 

q (cosy - cosy,) >,V,lpjS cosafq sirPa in case(a) 

11 (cos y- cos y#))/Vl I pS 1 cosatp toss a in case (b) 

These formulas give a reliable lower bound for the error of a freely idling gyroscope. 
In the case 0 <y. < TT/2 we infer that the gyroscope axis approaches the axis of rotation 
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of the base for q = +l,and moves away from the latter for q = - 1 . 
If s# 0 and aof 0 , a, = *lT , there exist portions of the kinematic trajectory which 

do not lie in the potential well, so that similar estimates apply. 

The line P((a , B ) = F. always lies in the potential well and passes through the point 
(a,, ,6,). It can serve as a close approximation of the true trajectory if the “schedule” 

of motion is specified on it, and will be called the “potential trajectory”. 
In order to specify the “schedule” of motion on this line we can write out differential 

equations of the (1.9) type, replacing the numerators by (CDF’ -+ pYII’) and (ma’ -t; pY,‘l 
respectively, and the denominator by a quantity close to cos P . The latter can be done 
in various ways and on the basis of various considerations. If we require that the differ- 
ential equations become Eq. (1.9) for a = 0 and for inertialess frames (p = 9 =R, s= 0). 

then it is sufficient to choose the denominator equal to cos P + &.lp(a , B ) , even though 

the form of Eqs. (1.1) and (1.2) indicates that the “simplified” equations [4] are those 

in which the denominator is equal to cos @ + /.lp(a , /3 ) 

2. Kinematic trajectories are investigated in p] for a = 0 and in @ and 31 for a # 0. 
Hence, we shall merely describe them briefly here. Kinematic trajectories are the datum 
levels of the function @(a, p ) . Limiting ourselves to the domain 1 B 1 5 fTi , - HIT < 
<a sll and assuming that cos cp > 0 , from Eqs. Q)=’ 13 @“’ - 0 we obtain the following 
fixed points of the function CD (a, fi): 

I- 

1) U = 0, 
n 

@ = -arc tg - ; cos cp Q,=-cO~=-~~~ 

2) a = 51, 
1c 

p = arc tg - . cos ‘p ’ @ = 0,” = fx” + cosa cp 

3) a = ‘/Z x, fi = f l/2 n; 0 = f x (the saddle point) 

Fig. 1 shows the lines Q = const for the cases 3c > 0 

a) xw - bj x=0 

Fig. 1 

(the minimum point) 

(the maximum point) 

, X. = 0 and X< 0. In the case K= 0 

these lines are closed ; for X# 0 
some of the lines are open ; speci- 
fically, the line 

0 (a, B) = CJ (%t BCJ 
is open-if I@ (a,,, &)I < lx 1, and 

closed if,lxl < I@ x (cQ,, &,)I< CD” 

The arrowheads on the lines in 

Fig. 1 indicate the direction of 
increasing 7. Eq. (1.9) can be 
integrated in finite form.In fact 

let (al, I31 1, (a.2. ,@ a) be two 
points of the kinematic trajectory 0 (a, @) = CD (aOb p,) = O,,,on which sina does not 
change sign, and let ‘T1 and T2 be the two corresponding values of 7 . We then readily 
find that 

- sign sin u 

C 

. 
r2-71= CD0 

Qa2 sin Pa - X@O _ Brc sin W2 sin PI - xcDo 
arc sln cos cp Jr@02 - aDo2 cos t-p yrw2 - mo2 

In view of the symmetry of the kinematic trajectory with respect to the straight lines 
a = &J (k is an integer) and of the fact that the expression following ‘arc sin is equal 
to fl at the points of intersection of trajectories with these straight lines, we readily 
obtain the time required for the complete return of the gyroscope frames to their initial 
position 
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&& 2lc 

0 1/l-22asinq+az. 

In the case CJ = 0 , this time is, of course, equal to the time 2ll/UJ of one complete 

revolution of the base. 

3. Let us examine the details of the true motion of the gyroscope. To begin with, we 

note that for W = 0 problem (1.1) to (1.3) has the unique solution a %a, , p 3 @, . 
Assuming that the solution of this problem for sufficiently small 1 W 1 can be expanded 

in series, 
e (t) = a0 + i ak (t) ok fi (t) = b + $ pk (r) gk 

k+? ir=l 

we obtain the following system of linear equations and initial conditions for determining 

al(t), Pit-b): 

foal" f(Qcos @PI'= - Qa&', (- 51 cosp)al* + Ppl"= - 510 ’ B. (3.1) 

a1 (0) = PI (0) = 0, a1'(O)=x1, Pi(O)= Xa 

(QqO'= @oL'(aOl (lo) = -x2* cos PO, DBa'= @,'(a~, PO) = XI* cos PO) 

In terms of the symbols M, I fi (x1 - x1*), Ms = @ (xa - xp*) the solution of 
problem (3.1) becomes 

1 
a1 (0 = xr*t + A Vfo - [M1 sin .4t - Ma (1 - cos .4t)] 

+=j [Ma sin At + Mi (1 - cos At)] 

(A = Q cos po/1/Pfo! 

PI (t) = x2- + 

Here i?TT/Id 1 is the limit of the period of nutational oscillations of the frames at the 

point &-, under the condition that their amplitude tends to zero. 

This solution means that the point a = a0 + oar (t), p = PO + opl (t) moves in the 
following way on the plane (a, @) : the ellipse with the semiaxes 

.-____ 
0 1T;i3,2 + M,2 (1 A ‘fo)-‘, 

-- 
oJ0JQ + M,Z (IAj ~/P)-‘, 

parallel to the axes a and B moves translationally with the compensating thrust velocity 

(UJxi, W xa*) ; at the same time the 

P 

oint 

the entire ellipse in the time 2TT/ IA 

(a, p ) moves along the ellipse, traversing 

of a single nutational oscillation.. System&l) has 
the first integral 

j-o*** + pp’2 = 0 (20 [ 0;; (a0 - a) + (D;; (PO - P)l f 0 (fox12 + px22)I 
defining the potential well in the form of a half-plane. It is clear that if the velocities 
(a l , p ‘) are parallel at the points (a(‘), o’r’) and (a (D, f3”‘) of the well, then the abso- 

lute value of the velocity is larger at the point which 
, I , ,,I, /I 11,. 
w D- 

is further away from the edge of the well. 
a) U=W b) I’>W The velocity of the motion along the ellipse is 

__ , , _, “./ parallel at two points to the translational velocity of 
the ellipse ; the absolute values of these velocities 

d) ,U.=M,=Z on the ellipse are equal, but their directions are oppo- 
site. At one of these points the velocity of motion 

Fig. 2 along the ellipse is in the same direction as the trans- 

lational velocity ; at the other point it has the oppo- 
site direction. In the former point the total velocity is larger in absolute value than at 
the latter point, so that the first point lies further away from the edge of the potential 
well than the second. 
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Fig.2 shows the possible types of motion. The half-plane complementing the well is 
shaded. Denoting by U and w the absolute values of the velocities of translational mo- 
tion of the ellipse and of the motion along the ellipse at the above points, we have U =W 

in case (a), V > W in case (b), and V <w in case (c) ; in all three cases we assume that 

M~a+Mna>O, case (d) shows the motion for Ml = & = 0 (i. e. the case where a com- 

pensating thrust is present). 
Thus, during one period r, = 2ll/ IA 1 o nutational oscillation the point (a, 8) moves f 

from its initial position (ao , ho) to the point (%I -I- oxi* T,, PO -J- @x2* T,)$ i.e. in the 
direction of the tangent to the kinematic trajectory. Assuming that 1 I_I 1 = W/ 1 n 1 is 

very small, we can conclude that the point has simply moved along the kinematic trajec- 
tory to some point a,“, 6;. etc. Thus, if we neglect the nutational oscillation, we can 

assume that the point (a, fi) moves discretely along the kinematic trajectory, with the 
average velocity of each jump equal to the velocity of the compensating thrust at the 

corresponding point of the trajectory. This type of motion can readily be discribedtby 
means of difference equations. If instead of the difference equations we write out their 
continuous analog, we arrive at problem (1.9) which defines the kinematic trajectory. 

From now on we shall always assume that the true trajectory for problem (1.1) to (1.3) 

is of the form shown in Fig. 3, where the domain complementing the potential well is 
shaded. 

4. Let(a,,@,) b e such that the corresponding kinematic trajectory ‘$! (CS , B ) = @, 
is far from the fixed points of the function @(a, ,6 ) . Then for sufficiently small 1 /AI 
some strip surrounding the kinematic trajectory contains no fixed points of the function 

F(a , p ) . Through each point of this strip passes a line F= const for which the tangent 

vector (Q-lPB’, - Q-IF,‘) forms an acute angle with the direction of the kinematic 

trajectory. 
Let a( 6) , B(O) be a solution of problem 

(1.1) to (1.3) and let the function 6( ti) = F(a($), 
/3(t)) reach a relative extremum for some to . 

Fig. 3 
The point (a( to), @(‘l&,)) will be called a 
marked point of the first kind if this extremum 

is a minimum, and a marked point of the second kind if it is a maximum. If a point of 
the trajectory lies on the edge of the well, then it is a marked point of the second kind, 
and the trajectory has a cusp there. From the considerations presented in connection 
with model problem (3.1) we conclude that at the marked points of the first kind, the 

velocity vector (a*( to), @‘(to)) has the same direction as the tangent to the line 
F= const . At the marked points of the second kind not lying on the edge of the well, 

the indicated directions can be either the same or opposite (see Fig. 3). 
Let the interior point (a, @ ) of the well be a marked point of the first kind of the true 

trajectory. Then, on the one hand, we have Eq. (1.4). while on the other hand 

a’=kf,J-iP’ P , fJ’ = - kQ-’ F,’ (k > 0) 

bet us introduce the notation 
H (a, P) = f (P) (FB’)’ + P (F,‘)’ 

B=( 
20 IF0 - Wa, PI1 + ma (fox? + Px2) ‘h 

H 1 
(q = sign Q) 

Then 
a' - qBFB’, 0’ - - qBF,’ (4.1) 
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Further, we have 

973 

daF 
- = F,~a’~+2F&‘P’ + “&3’s + F,‘a” + Fa’p” dta 

Replacing a”, 8” by their expressions obtained from (1.1) and (1.2), respectively, 

and recalling Formulas (4.1). we find that at the marked points of the first kind we have 

Rq. d2F 
=f @f &a -=-_-2oHf2~(SZ~os~+op)HB+ 

+ P (2Pf (P) L&c, (Fa’)” - 2F,;F,‘FI; + F,s; V','Pl + f’ $1 $,‘WVB’P+f 0) V’8’)21~ 

The right-hand side in this ex ression is a known function of U and /3 . Let us denote 
it by K(a , @ ) . Since @i;/d$ B 2 0 at the marked points of the first kind, we have 

K(a, 13 ) 2 0 at these points. On the other hand, by virtue of the fact that B = 0 on the 

edge of the potential well we have K= - 2UJH e 0 ; since K(a , p ) is continuous, this 
inequality is also valid in some strip at the well edge, so that this strip contains no marked 

points of the first kind. Clearly, as W -+ 0 

at each interior point of the domain Go , 
contains points for which K> 0 . 

so that for sufficiently small@ the domain Gw 
Thus, the line li= 0 separates the marked points of the 

first kind from the well edge. If the vector (a”, PO) has the same direction as the vector 

(n-1 FP’, - 9-l P,‘), at all the marked points of the second kind in some portion of 

the true trajectory, it is necessarily the case that ,Ks 0 at these points, so that the line 
K= 0 intersects the true trajectory several times and is a good approximation to it. The 

line K= 0 will be called the “energy trajectory” inasmuch as it takes account of the 

energy of the initial thrust in the form 4, X1” +PXa” l 

The shortcomings of this trajectory include the following : (1) we do not know the 
“schedule” of motion along this trajectory, since it is not defined by equations of the 

(1.9) type ; (2) generally speaking, this trajectory does not pass through the point (Cfc , 

&) ; (3) if the vector (a’, 8’) is directed oppositely to the vector (Q-~FP’,-Q-l~~*) 

at the marked points of the second kind in some portion of the true trajectory, then it 

may turn out that K> 0 at these marked points, so that this portion of the true trajectory 
lies on one side of the enrgy trajectory and thereby separates the true trajectory from the 
well edge. For example, in the case of model probIem (3.1) the marked points of the 

first and second kind lie on different sides of the energy trajectory if and only if 

1/M+’ + Mra < 2 vfox1*2 + Px~*~ 
ie- lxz-xi1 p 1~s -xs+J are not large as compated to Ix; I , IX,’ 1 . 

We note that hl= 0 for all the points of the kinematic trajectory @(Ct , f! ) = @, if all 

of the following conditions are fulfilled : (a) P = 0 =J? , s = 0 (e.g. in the case of iner- 

tialess frames), (b) a = 0 (for an undisplaced rotor), (c) x1 = x1*, Xa = X $ (with a com- 

pensating thrust). In the general case, considering Eq.K= 0 as quadratic in B , we obtain 
one of the roots & which is positive and tends to zero as W -, 0 . Hence, the equation of 
energy trajectory can also be written as 

@ (a. B) - @D, = -HBlpt2a8+~(Y,- ‘y (% B)) + %P (fox? 4- PXA 

where the expansion of the first term of the ~ght-end side in a power series can be 

written as 
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This implies that Formula (1.8) in which G&/~‘T and d@ /dT are replaced by the 

right-hand sides of (1.9) can be regarded as an approximate equation (to within )la) of 

the energy trajectory. 

Assuming that the energy trajectory is very close to the true trajectory, we can esti- 
mate the error of gyroscope operation ln the case a = 0 . To do this we replace the left- 
hand side of the approximate equation just written by cos y. - cos y and a, @ in its 

right-hand side by their values for the kinematic trajectory. This yields an analog of 

Formula (1.10) which results from adding the term ffr, (&a - Xi*‘) $_ P (X2’ - Xz*s)f to 

the expression in braces in Formula (1.10). 

6, Merely to be specific we shall carry out alI of our subsequent analysis for the case 
a=O,x= - sin? > 0, IQ, f%, S,ti < x (the kinematic trajectory is open and a 

increases). 
The kinematic, potential, and energy trajectories are symmetrical with respect to the 

straight lines a = kn (k = 0, -t-i, fz,...). We can prove that the true trajectory is 

symmetrical with respect to the straight line a = $I 0 is an Xnteger) provided that 
@‘= 0 at the instant of intersection of this straight line by the trajectroy ; this point of 
the trajectory is then marked. It is clear that by a slight alteration of the initial data we 
can guarantee that a trajectory close to the one under consideration has a marked point 
on the straight line a = Jn , In this sense the true trajectory can be considered approxi- 

mately symmetrical with respect to the straight lines a = 3’77. Hence, if, for example, 

O<O’,o sll , then we must first find the segment of the trajectory a, SU $TT and reflect 
it symmetrically with respect to the straight line Cr, = TT onto the segment TT ~CC 5 2Tl -a,, 

then find inde~ndently the segment of the trajectory for ‘2is -a, Sa 2 BrT from the 
initial data a = 2n - a,, fi = &,, a’ = -a’, = - oXI, fi’ = j3’0 = oXz and continue 

reflection further on in the straight line a .I ‘Ll7 , etc. 

Let(ak,Bk) and tl, (k= 1, 2, 3 ,... ) be the sequences of all marked points of the 
first kind and of the times of passage through them for some true trajectory. _Let the point 

with the subscript fl be closest to (a, + 2TT, 8,). Then tN is. of course, the time of 
complete return of the gyroscope to its initial position. The broken line connecting in 
sequence the points (ok, &), will be called a marked trajectory of the first kind. Simi- 

larly, we can consider a marked trajectory of the second kind as one which connects 
points of the second kind. In fact, the trajectory lies in the strip between the marked rra- 
jectories of the first and second kind. In the time 2JT/W of one complete revolution of 

the base it forms ap~o~mately Z?l/lOUJ nutational loops in this strip (if we assume that 
cos fi > $ on the trajectory and that PJ@( @) is a quantity of order from 1 to 5). If the 
rotor executes 1000 revolutions per second and that the gyroscope is situated on the Earth’s 
surface, then the number of nutational oscillations is approximately 9 X 106. In solving 
problem (1.1) to (1.3) by some numerical method (Runge-Kutta, Adams-St&mer, etc. ) 
it is advisable to choose the time interval in such a way that several intervals (from 10 
to 40) fit within a single nutational oscillation. If we solve the problem for a semitra- 
jectory and take just 10 intervals per nutational oscillation, this means 45 X 1Oe inter- 
vals. It appears that the solution of such a problem on existing computers is unfeasible 
because of the machine time required and the unreliability of the final results . 
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The subject of the present paper was suggested by a discussion with N. V. Butenin of the 

possibility of solving problem (1.1) to (1.3) on a computer. Paper [5] contains some 
results obtained through the numerical solution of the problem in question. 

Thus, determination of the complete true trajectory is a time-consuming and apparent- 

ly unnecessary problem. We shall now describe a method for the approximate determina- 
tion of the strip between the marked trajectories. 

Let us denote G,‘the domain in which the inequality K> 0 is fulfilled. If the point 

(a,, 8,) lies in G$ and if a> = W)(l , fi’, = W xa satisfy Eqs. (4.1) for Cr = a,, p = PO, 
then the initial point (a,,, PO) is the first marked point of the first kind in the required 

trajectory. If (ao, PO) is not such a point, then by some method of numerical integra- 
tion of problem (1.1) to (1.3) (with an interval substantially smaller than the nutational 

oscillation period) we can find the first marked point of the first kind on the basis of a 

change in sign of the quantity Fa’u’ -!- Fp’ fl’) from minus to plus. 
Now let us assume that we have found some point (a’, @“) of the domain G$ by some 

method and have established that it is a marked point of the first kind in the required 
trajectory, or that it lies close to the latter. Then, setting Cr, = a”, p = 8” in Formula 

(4.l).we find a”‘, 8”’ and carry out the numerical integration of system (1.1). (1.2) 

under the initial conditions CC, p”, a”, 8”’ to obtain a segment of the trajectory extend- 

ing over 5 to 10 nutational oscillations. The memory need only store the coordinates of 

the marked points of the first and second kind, the times of passage through these points, 
and the directions of the velocities at the marked points of the second kind. The coordi- 

nates and times of passage through the points of the first kind are treated (e. g. by the 

method of least squares) in order to find the vector (7, s ) of the average velocity of 
the marked point of the first kind. This vector (7”, s) and the time ~$1 (which spans 
100 to 200 periods of nutational oscillation) can be used to find the point a” l = CC0 + rtl, 

p- = p” + S&l . If the point (O? 1 Poe) belongs to the domain G$ , then (ct.*, Poe) is 

taken as the new approximate marked point of the first kind in the required trajectory. 
If (a”, Boo) does not belong to the domain G$, then the domain GG and the point 
(a”+ l/a &r, 6” & Va.stl) are also checked to see whether they belong, etc. Once a 

point from the domain Gi has been foun d in this way, the step of determining the aver- 

age velocity of the point of the first kind and the extrapolation are repeated. The coor- 
dinates and directions of the velocity at the marked points of the second kind which are 
stored in the memory make it possible to estimate the width of the strip occupied by the 
trajectory and provide a notion of the character of the nutational loops. 

No actual computations were carried out in the course of the present study. Experimen- 

tal computations of the complete true trajectory and of the strip between the marked 

trajectories should probably be carried out using not excessively small values (on the 

order of 0.0001 to 0,Ol). 
The author is grateful to N. V. Butenin, M. K. Gavurin and Ia. L. Lunts for their Critical 

comments and interest. 
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Several authors have investigated the properties of the solutions of differential equations 

of the form m 
2’ (t) = - 

s 
I (t -s) dK,, (t, 8) (1) 

m 0 m 

z”(t) = - 
s 

z’(t-s) dK,(t, s) - 
s 

$t -s)dKz(t, s) (2) 

0 0 

Here and below the symbol dKi (ti , s ) denotes the differential with respect to the 
second argument. Attention has been largely confined to the case of concentrated lag, 
i. e. to step functions !fi ( $, S) . The general case of lag distributed over a finite inter- 

val [O, S ( $) ] was first investigated by Myshkis p] . 
Stability conditions for the solutions of differential equations of this type were obtained 

in @] under the assumption that the kernels Kt depend only on s , i.e. that Ki ( t , S) s 
EKi (S ) and that the variation of the functions Ki (S ) in [0, a) is bounded. 

The present paper concerns the stability conditions for trivial solutions of equations of 
the form (1) and (2) . 

We assume that the functions Ki ($ , s ) satisfy the following requirement of bounded 
variation with respect to s : ~0 

SUpl 
s 

1 dKi (t, S) 1 < CO& < 00 (Odt<m) (3) 

0 

The solution X( $) of Eq. (1) (Eq. (2)) for 8 > 0 is determined by the function cp ( 6) 
(the function $ ( fi)) specified on (- 0~. 01, 

I :t) = cp (t), t<o (4) 

(z (t) = $(t), 2’ (t) = Q’ (t), t < 0) (5) 

Definition. The solution x1( 6) of problem (l), (4) (the solution X3( ti ) of prob- 
lem (2). (5)) will be called “stable” if for any C > 0 there exists a 6( 8) > 0 such that 

I xl (1) I < F for t > 0 (I %! (t) I < E for t>O) 


